Cuma, Mayıs 23, 2008

house always wins

olasılıksız


"Pascal'ın hâlâ matematik ile ilgilendiği dönemde, 1654'de, Chevalier de Mere adında bir Fransız asilzade ona birkaç soru sordu. Bu sorulara ilişkin matematiksel veriler çok ilginçti ve Pascal babasının eski dostu olan bir devlet büyüğüyle, Pierre de Fermat ile yazışmaya başladı.

De Mere aynı zamanda bir kumarbazdı ve o zamanlar popüler olan bir zar oyunu hakkında soru soruyordu. Oyunda dört zar kullanılıyordu. Her seferinde oyuncu dört zar atıyordu. Dört zardan hiçbiri altı gelmezse oyuncu para kazanıyordu, zarlardan bir tanesi bile altı gelirse parayı kasa alıyordu. De Mere böyle bir oyunda kasanın avantajlı durumda olup olmadığını bilmek istiyordu. Yani olasılıklar kasadan yana mıydı?

Eğer bu sınıfta bir tek şey dahi öğrenseniz, bu bile size faydadır: O da şudur," Caine tahtaya gitti ve koca harflerle yazdı.

Olasılıklar HER ZAMAN kasadan yanadır.

Birkaç öğrenci bu espriye güldü. "Peki neden? Bunu bana anlatabilecek öğrencim var mı? Jim."

Caine'in en sevdiği öğrenci oturduğu yerde doğruldu. "Çünkü, eğer olasılıklar kasadan yana olmasa o zaman kasa para kaybederdi ve sonunda kasa kalmazdı."

"Aynen öyle," dedi Caine. "Bana kalırsa olasılık teorisi ortaya atılmadan bile, de Mere'in bunu anlamış olması gerekiyordu; ama Fransız asilzadeler o kadar akıllı olsalardı kellelerinin vurulmasına da izin vermezlerdi.

Her neyse, Pascal ve Fermat gerçekten de - 'cidden öyle miymiş' gibi nidalarla - olasılıkların hep kasadan yana olduğunu kanıtladılar. Oyuncunun yüz oyun oynadığını varsaydılar - 100 atışın 48'inde altı gelmeme olasılığı yüksekken, 52'sinde altı gelme olasılığı daha yüksekti. Böylece olasılıklar kasadan yanaydı: 52'ye 48. İşte olasılık teorisi de böyle doğdu. Fransız bir asilzade dört zarla altı atmamaya çalışmanın akıllıca bir kumar olup olmadığını bilmek istediği için."

0 Comments:

Yorum Gönder

<< Home